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Abstract

We examine the statistical problem of computing a favorable betting strategy for
the game of roulette with an unbalanced wheel. Using negative average expected
log capital after n plays for loss function, we show that the Bayes strategy for a
Dirichlet prior is asymptotically optimal. We simulate to illustrate the behavior
of the strategy for a biased favorable wheel and an unbiased unfavorable wheel.

1 Introduction and Notation.

Consider the problem of betting on a roulette game with the possibility of an unknown
favorable bet due to wheel imbalance. Wilson (1965), presents a nice discussion of the
problem with anecdotes about groups exploiting such imbalance to make money and giving
data on his own experiences. More recently, Barnhart (1992) gives interesting stories about
large casino wins. Ethier (1982), considers the related problem of hypothesis testing for
favorable numbers. Of more direct interest to the gambler, is the problem of determining an
optimal betting strategy to maximize capital gain.

As a statistical model for roulette outcomes, let independent random column vectors
X1, Xy, ..., X, have a multinomial distribution M(1, p) where X; = (X;1, Xio, ..., Xix)7,
X =000 1, "0 X =1,p = (p1,p2y ..., 0x)7, b, pr = 1. Thus with probability pz,
X = 1 if the ball falls into cell number k£ on the ith play, and X;; = 0 with probability
1 — pg if it does not.

The ith play payoff for $1.00 bet on cell number & is My dollars for a win (X;;, = 1) and
—$1.00 for a loss (X;r = 0). For roulette in the US, there usually are a total of K = 38 cells
for a wheel labeled 00,0, 1,2,...,36 with payoff My = $35 for all single number bets.



Starting with initial dollar capital, Cy, let ', be the capital at the end of the nth bet, and
let the strategy be the column vector 7,, = (Yno, Yn1, - - - ,ynK)T where 7,0 is the proportion
of C,_; that is not bet and ~,; for £ = 1,2,..., K is the proportion bet on cell number &
for the nth gamble with "8 v, = 1.

The capital at the end of n gambles for this strategy will be

K K

., —Cn1’7n0+2’7nk (M + 1)X, COH %0‘|’E%k (M + 1) Xi1) (1)

k=1 =1 k=1

Write X[n] = (X1, Xs,...,X,) and assume ~; = (Y50, Vi1, - - -, Vi ). only depends on
(X1, X2,..., Xi21) (F(X][i — 1]) measurable).

We first discuss the solution to the probability problem of finding the optimal strategy
~.,., for known p, to maximize the expected log capital as given by Kelly (1956). Kelly’s
use of the log penalizes extreme wagers that bet everything on proper subsets and prevents
bankruptcy. We then consider the statistical problem of finding a strategy for unknown p
and examine the properties of the Bayes strategy for balanced Dirichlet priors.

2 An Optimal Strategy for Known (pi,ps,...,pg)-

When the true cell frequencies p are known, Kelley (1956), gives the optimal strategy.
Breiman (1960), and Finkelstein and Whitley (1981) also discuss the problem and give limit
theorems. Because of the lack of detail in Kelley’s derivation we present the solution in our
notation.

For known p an optimal strategy =, = ~(p) is independent of n. For our loss and unit
initial capital, we equivalently maximize the expected log return for a single gamble

K

= Epkln(’yo + (Mg + 1))

k=1

subject to the inequality constraints v, > 0 for & = 0,1,..., K and equality constraint
Zk 0Tk =

Using the Kuhn Tucker theorem (see for example Mangasarian (1969) section 7.2.2 or
Rockafellar (1970) corollary 28.3.1) we can minimize the Lagrangian

K

L) == prln(yo +w(My + 1)) Z)\k’Yk‘|‘)\+ nyk—l

k=1

where XA = (Mg, A1, ..., A, Ay )T is the vector of Lagrange multipliers.
The solution will satisfy the equations

IL(A,7) _ p
T% =0 (2)



fork=0,1,..., K

Y Y

K
k=0
with Ay > 0 for the inequality constraints £ =0,1,..., K, and

S e=1 )

for the equality constraint. Solving equation (2) k =1,2,..., K for v, in terms of v and A
gives

ST N — (5)
A =X (M +1)

If v¢ > 0, then Ay = 0 because of equation (3) and then
_ Pr 7o

A (Mt 1)

If we define G, = {k : 1 <k < K, v > 0} then substituting these ~; values in equation
(4) gives

V&

_ 1= Yheg, P/ (6)
I = Yreg, (My+ )71
For 9 > 0 equation (3) gives Ay = 0. Using equation (2) for k = 0, after substituting the
above value of 7y we obtain A\, = 1.
When ~, = 0, equation (5) with A; =1 gives

M=1—pe(Mpg+1)/7% >0 (7)

Yo

so v, = 0 implies 9 > pp(My, + 1). Then for this solution

o(v) = > prln(pr(My + 1)) + poln(yo)

kegy

where po = 1 — 34cq. P

To determine the set G, = {k : 1 <k < K, v > 0} first sort the values and relabel
them so that p;(M; 4+ 1) > po(Ma 4+ 1) > ... > px(Mg + 1). We then have two cases.

If 1 >pi(My+1) then pp, < 1/(M+ 1) forall k =1,2,..., K. It follows from equation
(6) with Ay =1 that v > 1 > pp(My+1) forall k =1,2,..., K and ¢(=) will be maximized
for Gy empty (v =0 for k=1,2,..., K, 70 = 1). Thus for this case we don’t bet.

If 1 < pi(M; + 1) we prove that if & € G, then j € G, for 1 < j < k. Assume, to the
contrary, that 7 ¢ G for j < k € G4. Then v; = 0 and o > p;(M; 4+ 1) by equation (7).
But p;(M; + 1) > pe(Mr 4+ 1) so vo > pe(Mr 4+ 1) and 0 < v = pr — Y0/ (Mr +1) <0, a
contradiction.

Thus G4 = {1,2,...,r} where r > 1 is the largest integer with 1 — >, _, (M + 1)~ >0
and

pr(My +1) > o[r] (8)
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where yo[k] = (1 — Zle p;) /(1 — Zle(Mt + 1)71). Then with v = y[r]

e =Pe — Y0/ (M +1) (9)
fork=1,2,...;r,and vy =0 for k=r+1,..., K. We also have the maximum
¢(v) = > peln(pr(My + 1)) + poln (7o) (10)
k=1

where pg = Zf:,,_l_l pi. Call this maximum ¢*(p).

3 Average Return EC, and Variance.

For known p, the optimal strategy is constant so that for a single play (n = 1), we have

K K
E(C1/Co) = E(yo + D (M + 1) X1k) = 70+ Y pevn(Mi + 1))
k=1 k=1
Using independence, for general n,
n K
E(Co/Co) = E (o + Y- m(Mi + 1) Xix) = [E(C1/Co)]". (11)
=1 k=1
Similarly
K
E[(C1/Co)’) = D pr(v0 + (M + 1))?
k=1
and

E[(C./Co)*] = {E[(C1/Co)*]}".
It follows that
Var(Cn/Co) = {E[(C1/Co)’]}" — {[E(C1/Co)|*}" = {E(C1/Co)}"[(1 + A" — 1] (12)
where

[y P (M + 1) — (55 prve(Me + 1))
Ay =0(C/Co)/E(C]/Cy) = -
) [Yo + iy pek( M + 1)]

is the coefficient of variation for a single play.

The standard deviation can be quite large in comparison to the expectation so that often
very large or very small returns occur after a period of play.

Some insight into the variation can be obtained from the central limit theorem for in-
dependent, identically distributed random variables. Taking logs in equation (1) for the
optimal strategy =+, = =, we can write

C, = Coené*(z))-l—\/ﬁoZn

- a large sample log-normal representation where 7, — A(0,1) in distribution as n — oc.

Here
K

ol = zi:PkW(’Vo + e (My + 1)) = D peln(yo + (M + 1))

k=1



4 An Example.

To illustrate the strategy calculation and its expected return for a known biased model with
a small number of cells (K = 4), consider bets on green, the first dozen, second dozen,
and third dozen (see for example Scarne (1961) page 365). Specifically, we combine green
outcomes {0,00} into a cell with index & = 1, outcomes {1,2,...,12} into a cell with index
k = 2, outcomes {13, 14,...,24} into a cell with index k = 3, and outcomes {25,26,...,36}
into a cell with index k& = 4.

The payoff amounts for a $1.00 bet are M; = $17.00 for green, with My, = M3 = M, =
$2.00 for each of the dozens.

Let the true cell frequencies be p = (3/38,14/38,12/38,9/38)7 as compared to
(2/38,12/38,12/38,12/38)T for a completely balanced wheel. Table 1 gives the optimal

strategy calculation in this case.

Table 1. 4 computation.
pe My pe(Mp+1) Yolk] Yk
3/38 17 54/38=1.42 315/323=.98 3/95
14/38 2 42/38=1.42 189/209=.90 8/95
2
2

12/38 36/38=0.95  81/95=.85 3/95
9/38 27/38=0.71 F0
b i (1= (M; +1)77 <0, 70 =[3] =81/9

It is interesting to note that v5 = 3/95 > 0 despite ps(Ms + 1) = 36/38 < 1.

A N e

To calculate the expected return for starting capital of Cy = $1000 after n = 100 games
we obtain from equation (11)

B(CL/Co) = S+ (E) ()18 + (300 (o) + (12)(2)3 = 1021956
ECho0 = $1000 x [ECy /Co]'% = §7,607.50 .
With
3. 3 14 8 123 3.3 14 8 123

[(59)(g5)° 18" + (39)(g5)"3" + (59)(55)™3" — () (Ge)18 + () (g3 + (@)(%)3)]1/2
= o(C1/Cy) = 0.1538721
we have the coefficient of variation
Ay =o0(Cy/Co)/E(C1/Cy) = 0.1507813
and the standard deviation from equation (12) is
o(Cho0) = (ECi00)[(1 + A2 — 1112 = 22,139.21 .

Note the extreme variability.



5 The Case of Unknown (pi,ps,...,px)-

We now consider the statistical problem of determining a strategy vy[n] = (v;, 7z, - . -, 7, ) EHI*?

for n consecutive gambles, to maximize, for unknown fixed p, the expected log return

Exppln(Cu(v[n], X[n])).

As a means of deriving a class of interesting strategies, and noting the suggestion by
Thomas Kurtz mentioned by Ethier (1982), we consider the Bayes strategy for the Dirichlet
prior joint density

_ [(oy) cor—1 as—1  ax—1
fP(p) - F(Oél)F(OZQ)"'F(O!K)pl Ps Px

where 0 < pp < 1, 25‘:1 pi=1a,>0,ap = 25‘21 oj. This is a natural and mathematically
convenient prior for the multinomial model and is the conjugate prior generally recommended
by Raiffa and Schlaifer (1961) (see for example Wilks (1962) or DeGroot (1970)). The
posterior distribution also belongs to this Dirichlet class of distributions.

A Bayes solution will minimize the Bayes risk or maximize the expected log return aver-
aged with respect to the Dirichlet prior:

Ep Exppln(Crh(v[n], X[n])). (13)
To find the Bayes strategy, rewrite equation (13) as

K

EPEX[n—1]|73EXn|X[n—1],73{ln(cn—1) + ln(7n0 + Z F)/nk(Mk + 1)Xnk)}
k=1

K
= EX[n—l]EP|X[n—1]{ln(Cn—l) + Zpkln(7n0 + F)/nk(Mk + 1))}
k=1

K

k=1

where

O + Sk[n — 1]

Prr = E(Pe| X [n —1]) = p—

is the posterior expectation of pj, based on n — 1 observations with Si[n — 1] = S0 X4

It follows that the ith column of a Bayes strategy ¥[n] = (41,44, - - -, ¥,) ETV*" is given
by equation (9) with p; replaced by the Bayes estimates p;; for i = 1,2,...,n where S;[0] =0
for the starting strategy (1 = 1).



6 Large Sample Optimality.
For the Bayes strategy, consider the limiting average expected log return over n gambles
given by

: 1 -

In theorem 1 we show it attains the expected log return ¢*(p) for the optimal strategy when
p is known.

Write 1
EX[n”pgln(Cn(:y[n], X([n])
1 1 & -
= gln(Co) +— > Expapln(Fio + Y Ain( My + 1) X)) (14)
=1 k=1
and consider the nth term in the sum on the right
K
;/)n = EX[n”pln(’Ayno + E ’AYnk(Mk + 1)Xnk) (15)

k=1

K

= Expn-1)pEx 1 xn-1),p0n(Fno + Y Yok ( My 4+ 1) X k)
k=1

K

= EX[n—1]|p EPlel(’AYno + ’A)/nk(Mk + 1))
k=1

To first show v, — ¢*(p) as n — oo we prove the following

)(K-|—1)><n we

Lemma 1 For fized p, Bayes estimator p,, and strategy Y[n] = (Y1,99, -+ ¥n
have
K K K
S prln(Par(My 4+ 1)) < peln(Fno + k(M +1)) <D peln(My +1).
k=1 k=1 k=1
Proof. The right inequality holds since (Y0 + Yne(Mi + 1)) < (M) + 1).

For the left inequality,
K

> peln(Yno + Aok Mk + 1))

k=1
r K
= ijiln(ﬁnk(Mk + 1)) + Z pkln(ﬁ)/no)
=1 k=r+1

> ipkln(ﬁk(Mk +1))

k=1
since Yno > Pui( My + 1) for k > r where r is defined in equation (8) with probabilities pyy.
This completes the proof.
Next we prove



Lemma 2 For0<p, <1, k=1,2,..., K and the Bayes estimates p,; we have

K K

Exlp D Prln(pur(My + 1)) = > peln(pe( My + 1))

as n — oQ.
Proof. By additivity, it suffices to prove Eln(pni) — In(pr) as n — oc.

Choose ¢, 0 < £ < p;, and define the set A, = {w : Sk[n—1] < (n—1)(pr —¢)}. Using
the definition of p,r we have

0 < afarg + (n— 1)) < (a + Sl — 1)/ (s + (n— 1)) = pros < 1

and
Qg

n|——
(a+ +(n—1)
For s, = [(n — 1)(px — ¢)| the greatest integer not exceeding (n — 1)(px — €), we have

(" amp s < (M0 g ()

Sn Sn npr — Sn

using Feller (1950 page 140, (3.6)). It follows as n — oo that

ay

In (—) P(Auk) — 0 and Eln(png)la,, — 0
ay+(n—1)

using (16).
On the complement set AS, we have Sg[n — 1] > (n — 1)(pr — €) so that

1> poy = Skln — 1] + oy, S (n—1)(pr — ) + ag
n—1+a; n—14+a;
Pk — &
>
T ltay/(n—1)
for n sufficiently large. Thus In(pn;) is bounded on A, and we apply the dominated con-
vergence theorem to obtain

> (pr —¢€)/2

Eln(pny)lac, — In(pr)

since ppy converges almost surely to py by the strong law of large numbers and I, — 1
almost surely. Finally

to finish the proof of lemma 2.
Now using the lemmas we conclude



Theorem 1 For fized pp, 0 < pr < 1 and Bayes strategy ¥[n] we have i, — ¢*(p) as
n — oo, where ¥, and ¢* are defined by equations (15) and (10), and

. 1 . o«
lim Expgpp—in(Ca(3{n], X[n]) = 6"(p).

Proof. Since p,; converges almost surely to p, it follows that a Bayes strategy %, =
~(p,,), using equations (9) and (10), converges almost surely to an optimal strategy for p
known

4. = ¥(p)

as n — oo since the equations are continuous in p. Thus the function

K
hy, = Zpkln(%o + Yok (M, + 1)) = ¢*(p)

k=1

almost surely since it is also a continuous function. If we denote the random function
Gn = S0 prln(pur(My + 1)) and the constant G = Yk prln(Mj, + 1), then by lemma I,
gn < h, < G. Since g, = g = 25 prin(pp(My + 1)), and by lemma 2, Eg, — g, we can
apply the theorem of Pratt (1960) to conclude ¥, = Eh,, — ¢*(p).

For the second part of the theorem, the average expected log return also converges to
¢*(p) using n~'in(Cy) — 0 and Toeplitz lemma (see for example Ash (1972 page 270))
applied to equation (14).

7 Performance of the Bayes Strategy.

For single number bets, symmetry considerations suggest using prior parameters the same
for all cell numbers (o = ). If « is selected to be large, the Bayes strategy observes for
quite a few games without betting. If the wheel is favorably biased, eventually the Bayes
estimates p,; will discover this after many games and betting will begin. If a small « is
used, chance fluctuations in the counts lead to early betting on unfavorable cells resulting in
capital near zero.

Because of the complexity of C,, when ~[n] depends on X [n — 1], we simulate to get some
idea of performance. Table 2 gives results for n plays using « as the prior parameter and Cy
as the initial capital. Sample averages and sample standard deviations

R

Co =3 Calg)/R, S(Cu) = [32(Culy) = Cu)*/ (R = D)V

i=1 i=1

for R = 10,000 samples are given where C,(j) is the capital at the end of n plays for the jth
sample replication. A biased wheel with p; = 1/30, p, = ... = p3g = 29/1110 was used. This
degree of bias in the wheel is consistent with the estimates for wheel imbalance discussed by

Wilson (1965).



The multiplicative random number generator a; =

(a;—1 X 69069) mod 2°* was used with

the jth random number on (0, 1) given by z; = a;/2**. The period is 2°*/4 = 1,073, 741,824
A different starting seed integer ay # 0 was used to

(see for example Marsaglia (1972)).
compute each entry.

Table 2. Bayes Strategy Simulation.
p = (1/30,29/1110,...,29/1110), M; = $35, Cy = $1000, R = 10,000.
Cy

(S(Cp)) | n =100 200 500 1000 2000 5000
a =1 20.12 0.43 0.00 0.00 0.00 0.00
(906.92) (36.39) (0.00) (0.00) (0.000) (0.00)
2 199.13 119.09 0.01 0.00 0.00 0.00
(3348.55) | (7800.21) (0.51) (0.00) (0.00) (0.00)
5 635.63 336.51 10.00 0.07 0.00 0.01
(1681.20) | (7460.27) | (272.36) (1.15) (0.04) (0.00)
10 863.79 638.70 156.42 18.07 1.69 0.12
(613.25) | (1229.23) | (1103.10) | (296.89) (54.02) (5.88)
20 966.90 874.76 566.34 252.13 148.70 24.12
(213.69) | (424.02) | (915.12) | (1468.52) | (5312.37) (832.58)
50 998.69 991.92 948.89 867.31 877.24 6413.53
(29.13) (85.02) | (323.98) | (1652.45) | (4441.26) | (218520.92)
100 999.97 999.86 997.85 993.99 1084.80 10378.17
(1.48) (10.55) (67.40) | (227.77) | (1238.92) | (488461.42)
200 1000.00 1000.00 1000.01 1001.83 1038.90 2005.98
(0.00) (0.20) (3.34) (30.05) | (230.72) (3869.52)
500 1000.00 1000.00 1000.00 1000.00 1000.21 1052.87
(0.00) (0.00) (0.00) (0.18) (5.44) (174.80)

Figure 1 gives the histogram of 10,000 values of C,, for a = 100, n = 5000, Cy = $1000

using logarithmic scale class intervals and positive counts as given in table 3.

Table 3. Counts for 10,000 values of C,,.
Interval [26’ 27) [27’ 28) [28’ 29) [29’ 210) [210’ 211) [211’ 212) [212’ 213) [213’ 214) [214’ 215)
Count 25 862 2687 2463 1626 1047 601 328 170
Interval [215, 216) [216, 217) [217’ 218) [218’ 219) [219’ 220) [220, 221) [221’ 222) [225’ OO)
Count 78 53 31 12 10 ) 1

A log-normal distribution is suggested as in the case of known p.
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Figure 1. Counts of 10,000 values of C, with a = 100, n = 5000, Cyq = $1000.

To compare these results with those for p = (1/30,29/1110,...,29/1110)7 assumed
known we calculate

~ = (174/175,1/175,0,...,0)"
and

E(C1/Co) = (174/175 + (1/30)(1/175)36) = 1.001142857
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[(1/30)(1/175)367 — ((1/30)(1/175)36)%]"/*
E(C1/Co)

Table 4 gives corresponding expectations and standard deviations.

Ay = = (0.036884690 .

Table 4. Optimal Strategy Values.
n EC, o(Cy)
100 1121.00 427.79
200 1256.64 702.45
500 1770.22 1746.55
1000 3133.67 5331.35
2000 9819.88 36960.92
5000 302180.01 9039452.88

In addition to results for a biased wheel, it is of interest to see how the Bayes strategy
performs in the equiprobable case p = (1/38,1/38,...,1/38) when there is no favorable bet
(M = $35). Table 5 gives C,, and (S(C,)) for R = 10,000 simulations for some (o, n)

values.

Table 5. Bayes Simulation
pr = 1/38, R =10, 000.

(S(C,)) | n =1000 2000 5000
a =50 | 69634  340.47  39.19
(460.16)  (570.81) (113.28)
100 | 955.19  810.83  393.26
(148.20) (294.36) (349.26)
200 | 998.73  987.02  880.10
(15.15)  (61.25) (204.69)
500 | 1000.00 1000.00  999.47
(0.00)  (0.12)  (7.39)

8 Practical Considerations.

The Bayes strategy assumes that an arbitrary fraction of the capital (e.g. $1000 x 1/175 =
$5.714) can be bet. In reality there is usually a minimum bet and C, x v, must be an
integer multiple of this minimum bet. This restriction should diminish the exponential rate
of capital increase for a favorably biased wheel. The effect can be reduced by starting with
a large initial capital Cy. In addition, a requirement to bet at least four times the minimum
bet on each play as well as a maximum bet limitation further complicates implementing the
strategy.

Another difficulty is the computation required to determine bets. It may be not be
possible to bring a computer into some casinos although today’s palm top portables are
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unobtrusive. According to Barnhart (1992), the use of an electronic device to aid gambling
is a felony in Nevada.

The Bayes strategies that do well in table 2 have a long period initially with very little
betting. A practical approximation might initially observe the wheel for a long period
without betting, if this is permitted, and then use a fixed strategy for p estimated from
the initial counts -a “wheel clocking” approach.

A major difficulty is finding a wheel with sufficient favorable bias and avoiding gaffed
ones. Even if a favorable wheel is found such as described by Wilson (1965 page 33), there
is no guarantee that the casino will not change the wheel if there are large winnings.

We did not include a fixed overhead cost to observe the wheel when no bets are placed
(e.g. food, lodging, parking, etc.). Including such an overhead cost would change the Bayes
solution and make favorable returns even more difficult.

9 Conclusions.

If true frequencies are known accurately and a favorable bias exists, the optimal strategy
expected return increases exponentially with the number of games played (see table 4). When
frequencies are unknown, an exponential increase also occurs on favorably biased wheels but
a considerable number of trials are required (see table 2). Despite all the difficulties the
earning possibilities using prior parameter values in the range 200 < o < 500 are quite
interesting for 2000 or more plays. However, because of extreme variation, large losses as
well as large winnings are possible.
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